Assessing the Burn Severity of Wildland Fire in National Parks Using Landsat Imagery and the Normalized Burn Ratio

Brian Sorbel Fire GIS Specialist NPS Alaska Region

Objectives

- Define burn severity
- Describe why NPS fire management is interested in capturing burn severity
- Describe the Normalized Burn Ratio and corresponding Composite Burn Index methods of determining burn severity
- Describe the partnership with the EROS data center and the expected products

The Normalized Burn Ratio (NBR)

- Developed by Carl Key (USGS) and Nate Benson (NPS Everglades)
- Compares pre-fire and postfire Landsat scenes to generate a continuous index of burn severity
- Pre- and post-fire scenes should be on or near anniversary dates so that vegetation is in similar phenological states

$$NBR = \frac{TM4 - TM7}{TM4 + TM7}$$

Range (-1000 to 1000)

 $\triangle NBR = Prefire NBR - Postfire NBR$

Range (-2000 to 2000)

Landsat 7 ETM +

• 16 day repeat coverage

• 7 bands; NBR uses 2: TM Bands 4 and 7

• 30 meter minimum cell resolution

• Each scene=115 miles x 115 miles

• Scene costs approx. \$600

9-16-95 Pre-fire NBR

Landsat Pre and Postfire Views of the Beverly Fire, YUCH 1999

Post-fire NBR

9-12-99

$$NBR = \frac{TM4 - TM7}{TM4 + TM7}$$

Differenced NBR (\triangle NBR) = Prefire NBR – Postfire NBR

Final Perimeter Delineation & Landscape Level Burn Severity Determination

High Severity ($\triangle NBR = 780 - 1100$)

Scene selection criteria and processing specifics

- Landsat scenes should be terrain corrected
- Bands 4 and 7 should be processed from original digital number values to units of reflectance prior to calculation of NBR
- Pre- and post-fire scenes should be on or near anniversary dates so that vegetation is in similar phenological states

Rapid Assessment vs. Extended Assessment

Extended Assessment – "Best" index of burn severity

Rapid Assessment – Good definition of areas burned and perimeter

Field Verification through the Composite Burn Index (CBI)

- Ocular estimate of burn severity
- Crews estimate the degree of change in individual components of five strata of vegetation
 - Substrate (litter, duff, 1000 hr fuels, etc.)
- Low Shrubs (regeneration, new serals, Δ richness/cover)
- Tall Shrubs (% consumed, regeneration, new serals, Δ richness/cover)
- Intermediate Trees (% green, % brown, % black)
- Big Trees (% green, % brown, % black)

USGS EROS Data Center Partnership

- NPS Fire Management sufficiently interested in initial results of NBR burn severity processing to pursue large-scale nationwide testing
- EROS Data Center (EDC) responsible for processing, distribution and archiving of Landsat data
- Funding secure to generate burn severity products for significant fires through 2002/2003
- Priorities determined based on a fire's size, level of regional importance, vegetation type and local need.

Planned Burn Severity Projects * Priority is High unless otherwise noted

Additional Information

- Complete documentation and methods: http://www.fire.org/firemon, link to Landscape Assessment and Remote Sensing Measures
- Nate Benson Prescribed Fire Spec. (EVER) phone: 305-242-7851; email: nate benson@nps.gov